1. CIFAR 10 model 网络模型
① 下面用 CIFAR 10 model网络来完成分类问题,网络模型如下图所示。
2. DataLoader加载数据集
import torchvision
from torch.utils.data import DataLoader
import torch.nn as nn
train_data = torchvision.datasets.CIFAR10("./dataset", transform=torchvision.transforms.ToTensor(),
train=True, download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", transform=torchvision.transforms.ToTensor(),
train=False, download=True)
print("Train set Number are {}".format(len(train_data)))
print("Test set Number are {}".format(len(test_data)))
train_dataloader = DataLoader(train_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
Files already downloaded and verified
Files already downloaded and verified
Train set Number are 50000
Test set Number are 10000
3. 测试网络正确
import torch
from torch import nn
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(), # 展平后变成 64*4*4 了
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
if __name__ == '__main__':
tudui = Tudui()
input = torch.ones((64,3,32,32))
output = tudui(input)
print(output.shape) # 测试输出 测试输出的尺寸是不是我们想要的
torch.Size([64, 10])
4. 网络训练数据
import torchvision
from torch import nn
from torch.utils.data import DataLoader
# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(), # 展平后变成 64*4*4 了
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
# 创建网络模型
tudui = Tudui()
# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写
# 优化器
learning = 0.01 # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning) # 随机梯度下降优化器
# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 训练的轮次
epoch = 10
for i in range(epoch):
print("-----第 {} 轮训练开始-----".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
# 优化器对模型调优
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播,计算损失函数的梯度
optimizer.step() # 根据梯度,对网络的参数进行调优
total_train_step = total_train_step + 1
#print("训练次数:{},Loss:{}".format(total_train_step,loss)) # 方式一:获得loss值
if total_train_step % 100 == 0:
print("训练次数:{},Loss:{}".format(total_train_step,loss.item())) # 方式二:获得loss值
5. item作用
import torch
a = torch.tensor(5)
print(a)
print(a.item())
tensor(5)
5
6. 查看训练损失
① 在pytorch中,tensor有一个requires_grad参数,如果设置为True,则反向传播时,该tensor就会自动求导。
② tensor的requires_grad的属性默认为False,若一个节点(叶子变量:自己创建的tensor)requires_grad被设置为True,那么所有依赖它的节点requires_grad都为True(即使其他相依赖的tensor的requires_grad = False)
③ 当requires_grad设置为False时,反向传播时就不会自动求导了,因此大大节约了显存或者说内存。
④ with torch.no_grad的作用在该模块下,所有计算得出的tensor的requires_grad都自动设置为False。
⑤ 即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。
⑥ torch.no_grad():停止计算梯度,不能进行反向传播。
import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(), # 展平后变成 64*4*4 了
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
tudui = Tudui()
# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写
# 优化器
learning = 0.01 # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning) # 随机梯度下降优化器
# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮次
epoch = 10
# 添加 tensorboard
writer = SummaryWriter("logs")
for i in range(epoch):
print("-----第 {} 轮训练开始-----".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
# 优化器对模型调优
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播,计算损失函数的梯度
optimizer.step() # 根据梯度,对网络的参数进行调优
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},Loss:{}".format(total_train_step,loss.item())) # 方式二:获得loss值
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
total_test_loss = 0
with torch.no_grad(): # 没有梯度计算,节约内存
for data in test_dataloader: # 测试数据集提取数据
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
total_test_loss = total_test_loss + loss.item() # 所有loss
print("整体测试集上的Loss:{}".format(total_test_loss))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
total_test_step = total_test_step + 1
writer.close()
Files already downloaded and verified
Files already downloaded and verified
训练数据集的长度:50000
测试数据集的长度:10000
-----第 1 轮训练开始-----
训练次数:100,Loss:2.2818071842193604
训练次数:200,Loss:2.267061471939087
训练次数:300,Loss:2.2060177326202393
训练次数:400,Loss:2.1160497665405273
训练次数:500,Loss:2.03908371925354
训练次数:600,Loss:2.0013811588287354
训练次数:700,Loss:1.971280574798584
整体测试集上的Loss:311.444508433342
-----第 2 轮训练开始-----
训练次数:800,Loss:1.8406707048416138
训练次数:900,Loss:1.835253357887268
训练次数:1000,Loss:1.9193772077560425
训练次数:1100,Loss:1.9817758798599243
训练次数:1200,Loss:1.6866414546966553
训练次数:1300,Loss:1.6833062171936035
训练次数:1400,Loss:1.7423250675201416
训练次数:1500,Loss:1.7910836935043335
整体测试集上的Loss:295.83529579639435
-----第 3 轮训练开始-----
训练次数:1600,Loss:1.7340000867843628
训练次数:1700,Loss:1.6623749732971191
训练次数:1800,Loss:1.9103188514709473
训练次数:1900,Loss:1.722930908203125
训练次数:2000,Loss:1.8943604230880737
训练次数:2100,Loss:1.4975690841674805
训练次数:2200,Loss:1.464676856994629
训练次数:2300,Loss:1.7708508968353271
整体测试集上的Loss:273.4990575313568
-----第 4 轮训练开始-----
训练次数:2400,Loss:1.7362182140350342
训练次数:2500,Loss:1.3517616987228394
训练次数:2600,Loss:1.5586233139038086
训练次数:2700,Loss:1.6879914999008179
训练次数:2800,Loss:1.469564437866211
训练次数:2900,Loss:1.5893890857696533
训练次数:3000,Loss:1.352890968322754
训练次数:3100,Loss:1.4961837530136108
整体测试集上的Loss:270.01156997680664
-----第 5 轮训练开始-----
训练次数:3200,Loss:1.3372247219085693
训练次数:3300,Loss:1.4689146280288696
训练次数:3400,Loss:1.4240412712097168
训练次数:3500,Loss:1.5419731140136719
训练次数:3600,Loss:1.5850610733032227
训练次数:3700,Loss:1.343977451324463
训练次数:3800,Loss:1.3023576736450195
训练次数:3900,Loss:1.4324713945388794
整体测试集上的Loss:257.1781986951828
-----第 6 轮训练开始-----
训练次数:4000,Loss:1.3752213716506958
训练次数:4100,Loss:1.4291632175445557
训练次数:4200,Loss:1.5042070150375366
训练次数:4300,Loss:1.1800527572631836
训练次数:4400,Loss:1.1353368759155273
训练次数:4500,Loss:1.3278626203536987
训练次数:4600,Loss:1.385879397392273
整体测试集上的Loss:243.80352401733398
-----第 7 轮训练开始-----
训练次数:4700,Loss:1.3193678855895996
训练次数:4800,Loss:1.5091830492019653
训练次数:4900,Loss:1.390406608581543
训练次数:5000,Loss:1.377677083015442
训练次数:5100,Loss:0.9832243919372559
训练次数:5200,Loss:1.306634545326233
训练次数:5300,Loss:1.2060096263885498
训练次数:5400,Loss:1.3645224571228027
整体测试集上的Loss:227.03500604629517
-----第 8 轮训练开始-----
训练次数:5500,Loss:1.2007256746292114
训练次数:5600,Loss:1.2000162601470947
训练次数:5700,Loss:1.217725157737732
训练次数:5800,Loss:1.2193546295166016
训练次数:5900,Loss:1.344832420349121
训练次数:6000,Loss:1.5032548904418945
训练次数:6100,Loss:0.9945251941680908
训练次数:6200,Loss:1.0842390060424805
整体测试集上的Loss:210.75880527496338
-----第 9 轮训练开始-----
训练次数:6300,Loss:1.3924059867858887
训练次数:6400,Loss:1.08247971534729
训练次数:6500,Loss:1.6116385459899902
训练次数:6600,Loss:1.0441133975982666
训练次数:6700,Loss:1.0808278322219849
训练次数:6800,Loss:1.1203839778900146
训练次数:6900,Loss:1.065340518951416
训练次数:7000,Loss:0.8646073341369629
整体测试集上的Loss:200.43587028980255
-----第 10 轮训练开始-----
训练次数:7100,Loss:1.2311145067214966
训练次数:7200,Loss:0.9793491363525391
训练次数:7300,Loss:1.1264833211898804
训练次数:7400,Loss:0.8558132648468018
训练次数:7500,Loss:1.1851539611816406
训练次数:7600,Loss:1.2427409887313843
训练次数:7700,Loss:0.8233367204666138
训练次数:7800,Loss:1.2412829399108887
整体测试集上的Loss:194.5557427406311
① 在 Anaconda 终端里面,激活py3.6.3环境,再输入 tensorboard --logdir=C:\Users\wangy\Desktop\03CV\logs 命令,将网址赋值浏览器的网址栏,回车,即可查看tensorboard显示日志情况。
7. 保存每一轮后参数
import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(), # 展平后变成 64*4*4 了
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
tudui = Tudui()
# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写
# 优化器
learning = 0.01 # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning) # 随机梯度下降优化器
# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮次
epoch = 10
# 添加 tensorboard
writer = SummaryWriter("logs")
for i in range(epoch):
print("-----第 {} 轮训练开始-----".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
# 优化器对模型调优
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播,计算损失函数的梯度
optimizer.step() # 根据梯度,对网络的参数进行调优
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},Loss:{}".format(total_train_step,loss.item())) # 方式二:获得loss值
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
total_test_loss = 0
with torch.no_grad(): # 没有梯度了
for data in test_dataloader: # 测试数据集提取数据
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
total_test_loss = total_test_loss + loss.item() # 所有loss
print("整体测试集上的Loss:{}".format(total_test_loss))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
total_test_step = total_test_step + 1
torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
print("模型已保存")
writer.close()
Files already downloaded and verified
Files already downloaded and verified
训练数据集的长度:50000
测试数据集的长度:10000
-----第 1 轮训练开始-----
训练次数:100,Loss:2.296692132949829
训练次数:200,Loss:2.285885810852051
训练次数:300,Loss:2.279501438140869
训练次数:400,Loss:2.2302145957946777
训练次数:500,Loss:2.1076254844665527
训练次数:600,Loss:2.0241076946258545
训练次数:700,Loss:2.0326571464538574
整体测试集上的Loss:313.3945701122284
模型已保存
-----第 2 轮训练开始-----
训练次数:800,Loss:1.8856056928634644
训练次数:900,Loss:1.8258416652679443
训练次数:1000,Loss:1.8736964464187622
训练次数:1100,Loss:2.009686231613159
训练次数:1200,Loss:1.7110859155654907
训练次数:1300,Loss:1.639999508857727
训练次数:1400,Loss:1.7460256814956665
训练次数:1500,Loss:1.804326057434082
整体测试集上的Loss:306.9472336769104
模型已保存
-----第 3 轮训练开始-----
训练次数:1600,Loss:1.7464873790740967
训练次数:1700,Loss:1.6793572902679443
训练次数:1800,Loss:1.9503461122512817
训练次数:1900,Loss:1.7317644357681274
训练次数:2000,Loss:1.9306591749191284
训练次数:2100,Loss:1.5165047645568848
训练次数:2200,Loss:1.459275722503662
训练次数:2300,Loss:1.79405677318573
整体测试集上的Loss:263.37182998657227
模型已保存
-----第 4 轮训练开始-----
训练次数:2400,Loss:1.7481664419174194
训练次数:2500,Loss:1.3587579727172852
训练次数:2600,Loss:1.5589655637741089
训练次数:2700,Loss:1.6773592233657837
训练次数:2800,Loss:1.5090978145599365
训练次数:2900,Loss:1.539999008178711
训练次数:3000,Loss:1.354047417640686
训练次数:3100,Loss:1.4937833547592163
整体测试集上的Loss:252.46941196918488
模型已保存
-----第 5 轮训练开始-----
训练次数:3200,Loss:1.3801052570343018
训练次数:3300,Loss:1.4397848844528198
训练次数:3400,Loss:1.46108078956604
训练次数:3500,Loss:1.5322155952453613
训练次数:3600,Loss:1.566237211227417
训练次数:3700,Loss:1.3101667165756226
训练次数:3800,Loss:1.2599278688430786
训练次数:3900,Loss:1.4321829080581665
整体测试集上的Loss:243.0005919933319
模型已保存
-----第 6 轮训练开始-----
训练次数:4000,Loss:1.3768717050552368
训练次数:4100,Loss:1.4406071901321411
训练次数:4200,Loss:1.5087004899978638
训练次数:4300,Loss:1.1848419904708862
训练次数:4400,Loss:1.1364362239837646
训练次数:4500,Loss:1.3455544710159302
训练次数:4600,Loss:1.40190851688385
整体测试集上的Loss:229.64346647262573
模型已保存
-----第 7 轮训练开始-----
训练次数:4700,Loss:1.2932283878326416
训练次数:4800,Loss:1.4792245626449585
训练次数:4900,Loss:1.3620022535324097
训练次数:5000,Loss:1.3700700998306274
训练次数:5100,Loss:0.9695762991905212
训练次数:5200,Loss:1.312595009803772
训练次数:5300,Loss:1.2064651250839233
训练次数:5400,Loss:1.3512318134307861
整体测试集上的Loss:218.9336529970169
模型已保存
-----第 8 轮训练开始-----
训练次数:5500,Loss:1.1977111101150513
训练次数:5600,Loss:1.2471140623092651
训练次数:5700,Loss:1.156531810760498
训练次数:5800,Loss:1.2149838209152222
训练次数:5900,Loss:1.2761603593826294
训练次数:6000,Loss:1.495023250579834
训练次数:6100,Loss:1.0265220403671265
训练次数:6200,Loss:1.0587254762649536
整体测试集上的Loss:209.12245571613312
模型已保存
-----第 9 轮训练开始-----
训练次数:6300,Loss:1.44582200050354
训练次数:6400,Loss:1.0848979949951172
训练次数:6500,Loss:1.5730582475662231
训练次数:6600,Loss:1.0684460401535034
训练次数:6700,Loss:1.0620619058609009
训练次数:6800,Loss:1.1571838855743408
训练次数:6900,Loss:1.0781376361846924
训练次数:7000,Loss:0.8753705620765686
整体测试集上的Loss:200.97392404079437
模型已保存
-----第 10 轮训练开始-----
训练次数:7100,Loss:1.237581729888916
训练次数:7200,Loss:0.9725397229194641
训练次数:7300,Loss:1.0951743125915527
训练次数:7400,Loss:0.8216850161552429
训练次数:7500,Loss:1.2100721597671509
训练次数:7600,Loss:1.2381412982940674
训练次数:7700,Loss:0.8831480145454407
训练次数:7800,Loss:1.2118467092514038
整体测试集上的Loss:194.03061652183533
模型已保存
8. argmax作用
import torch
outputs = torch.tensor([[0.1,0.2],
[0.05,0.4]])
print(outputs.argmax(0)) # 竖着看,最大值的索引
print(outputs.argmax(1)) # 横着看,最大值的索引
preds = outputs.argmax(0)
targets = torch.tensor([0,1])
print((preds == targets).sum()) # 对应位置相等的个数
tensor([0, 1])
tensor([1, 1])
tensor(2)
9. 打印正确率
import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(), # 展平后变成 64*4*4 了
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
tudui = Tudui()
# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写
# 优化器
learning = 0.01 # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning) # 随机梯度下降优化器
# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮次
epoch = 10
# 添加 tensorboard
writer = SummaryWriter("logs")
for i in range(epoch):
print("-----第 {} 轮训练开始-----".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
# 优化器对模型调优
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播,计算损失函数的梯度
optimizer.step() # 根据梯度,对网络的参数进行调优
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},Loss:{}".format(total_train_step,loss.item())) # 方式二:获得loss值
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
total_test_loss = 0
total_accuracy = 0
with torch.no_grad(): # 没有梯度了
for data in test_dataloader: # 测试数据集提取数据
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
total_test_loss = total_test_loss + loss.item() # 所有loss
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step = total_test_step + 1
torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
print("模型已保存")
writer.close()
Files already downloaded and verified
Files already downloaded and verified
训练数据集的长度:50000
测试数据集的长度:10000
-----第 1 轮训练开始-----
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
Cell In[24], line 70
68 for data in train_dataloader:
69 imgs, targets = data
---> 70 outputs = tudui(imgs)
71 loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
73 # 优化器对模型调优
File F:\miniconda\envs\yolov5\lib\site-packages\torch\nn\modules\module.py:889, in Module._call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
892 self._forward_hooks.values()):
893 hook_result = hook(self, input, result)
Cell In[24], line 24, in Tudui.forward(self, x)
23 def forward(self, x):
---> 24 x = self.model1(x)
25 return x
File F:\miniconda\envs\yolov5\lib\site-packages\torch\nn\modules\module.py:889, in Module._call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
892 self._forward_hooks.values()):
893 hook_result = hook(self, input, result)
File F:\miniconda\envs\yolov5\lib\site-packages\torch\nn\modules\container.py:119, in Sequential.forward(self, input)
117 def forward(self, input):
118 for module in self:
--> 119 input = module(input)
120 return input
File F:\miniconda\envs\yolov5\lib\site-packages\torch\nn\modules\module.py:889, in Module._call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
892 self._forward_hooks.values()):
893 hook_result = hook(self, input, result)
File F:\miniconda\envs\yolov5\lib\site-packages\torch\nn\modules\pooling.py:162, in MaxPool2d.forward(self, input)
161 def forward(self, input: Tensor) -> Tensor:
--> 162 return F.max_pool2d(input, self.kernel_size, self.stride,
163 self.padding, self.dilation, self.ceil_mode,
164 self.return_indices)
File F:\miniconda\envs\yolov5\lib\site-packages\torch\_jit_internal.py:365, in boolean_dispatch.<locals>.fn(*args, **kwargs)
363 return if_true(*args, **kwargs)
364 else:
--> 365 return if_false(*args, **kwargs)
File F:\miniconda\envs\yolov5\lib\site-packages\torch\nn\functional.py:659, in _max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode, return_indices)
657 if stride is None:
658 stride = torch.jit.annotate(List[int], [])
--> 659 return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
KeyboardInterrupt:
10. 特殊层作用
① model.train()和model.eval()的区别主要在于Batch Normalization和Dropout两层。
② 如果模型中有BN层(Batch Normalization)和 Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。
③ 不启用 Batch Normalization 和 Dropout。 如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。
④ 训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。
⑤ 在做one classification的时候,训练集和测试集的样本分布是不一样的,尤其需要注意这一点。
import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(), # 展平后变成 64*4*4 了
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
tudui = Tudui()
# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写
# 优化器
learning = 0.01 # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning) # 随机梯度下降优化器
# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮次
epoch = 10
# 添加 tensorboard
writer = SummaryWriter("logs")
for i in range(epoch):
print("-----第 {} 轮训练开始-----".format(i+1))
# 训练步骤开始
tudui.train() # 当网络中有dropout层、batchnorm层时,这些层能起作用
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
# 优化器对模型调优
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播,计算损失函数的梯度
optimizer.step() # 根据梯度,对网络的参数进行调优
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},Loss:{}".format(total_train_step,loss.item())) # 方式二:获得loss值
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
tudui.eval() # 当网络中有dropout层、batchnorm层时,这些层不能起作用
total_test_loss = 0
total_accuracy = 0
with torch.no_grad(): # 没有梯度了
for data in test_dataloader: # 测试数据集提取数据
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
total_test_loss = total_test_loss + loss.item() # 所有loss
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step = total_test_step + 1
torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
#torch.save(tudui.state_dict(),"tudui_{}.path".format(i)) # 保存方式二
print("模型已保存")
writer.close()
Files already downloaded and verified
Files already downloaded and verified
训练数据集的长度:50000
测试数据集的长度:10000
-----第 1 轮训练开始-----
训练次数:100,Loss:2.2891650199890137
训练次数:200,Loss:2.282130241394043
训练次数:300,Loss:2.2610340118408203
训练次数:400,Loss:2.181870222091675
训练次数:500,Loss:2.0396902561187744
训练次数:600,Loss:2.048051118850708
训练次数:700,Loss:1.9985613822937012
整体测试集上的Loss:311.35842967033386
整体测试集上的正确率:0.28870001435279846
模型已保存
-----第 2 轮训练开始-----
训练次数:800,Loss:1.864884853363037
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
Cell In[30], line 76
74 # 优化器对模型调优
75 optimizer.zero_grad() # 梯度清零
---> 76 loss.backward() # 反向传播,计算损失函数的梯度
77 optimizer.step() # 根据梯度,对网络的参数进行调优
79 total_train_step = total_train_step + 1
File F:\miniconda\envs\yolov5\lib\site-packages\torch\tensor.py:245, in Tensor.backward(self, gradient, retain_graph, create_graph, inputs)
236 if has_torch_function_unary(self):
237 return handle_torch_function(
238 Tensor.backward,
239 (self,),
(...)
243 create_graph=create_graph,
244 inputs=inputs)
--> 245 torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File F:\miniconda\envs\yolov5\lib\site-packages\torch\autograd\__init__.py:145, in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
142 if retain_graph is None:
143 retain_graph = create_graph
--> 145 Variable._execution_engine.run_backward(
146 tensors, grad_tensors_, retain_graph, create_graph, inputs,
147 allow_unreachable=True, accumulate_grad=True)
KeyboardInterrupt:
from torch.optim import SGD
import torch
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(), # 展平后变成 64*4*4 了
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self,x):
x = self.model1(x)
return x
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
tudui = Tudui()
loss_fn = nn.CrossEntropyLoss()
learning_rate = 0.01
total_train_step = 0
total_test_step = 0
epoch = 10
optimizer = SGD(params=tudui.parameters(), lr=learning_rate)
writer = SummaryWriter("./logs/Whole_Train")
for i in range(epoch):
print("Epoch {} start".format(i+1))
tudui.train()
total_train_loss = 0
for data in train_dataloader:
##
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},Loss:{}".format(total_train_step,loss.item())) # 方式二:获得loss值
writer.add_scalar("train_loss",loss.item(),total_train_step)
tudui.eval()
total_test_loss = 0
Total_Accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = ((outputs.argmax(1) == targets).sum()/test_data_size)
Total_Accuracy = Total_Accuracy + accuracy
print("Test Loss {}".format(total_test_loss))
print("Test Accuracy {}".format(Total_Accuracy))
writer.add_scalar("Test Loss", total_test_loss, total_test_step)
writer.add_scalar("Test Accuracy", Total_Accuracy, total_test_step)
total_test_step = total_test_step + 1
torch.save(tudui, "./model/tudui_{}".format(i))
print("模型保存完毕")
writer.close()
Files already downloaded and verified
Files already downloaded and verified
训练数据集的长度:50000
测试数据集的长度:10000
Epoch 1 start
Picture 100 , Loss 2.2941770553588867
Picture 200 , Loss 2.2848846912384033
Picture 300 , Loss 2.259817361831665
Picture 400 , Loss 2.1827566623687744
Picture 500 , Loss 2.037668228149414
Picture 600 , Loss 2.059863567352295
Picture 700 , Loss 1.9232399463653564
Test Loss 302.2341948747635
Test Accuracy 0.31800007820129395
模型保存完毕
Epoch 2 start
Picture 800 , Loss 1.8260973691940308
Picture 900 , Loss 1.7924437522888184
Picture 1000 , Loss 1.9194406270980835
Picture 1100 , Loss 1.9326812028884888
Picture 1200 , Loss 1.6951795816421509
Picture 1300 , Loss 1.6465996503829956
Picture 1400 , Loss 1.7238080501556396
Picture 1500 , Loss 1.7729756832122803
Test Loss 278.71068692207336
Test Accuracy 0.3671000301837921
模型保存完毕
Epoch 3 start
Picture 1600 , Loss 1.705325961112976
Picture 1700 , Loss 1.6539441347122192
Picture 1800 , Loss 1.9378607273101807
Picture 1900 , Loss 1.7367992401123047
Picture 2000 , Loss 1.8841522932052612
Picture 2100 , Loss 1.5182130336761475
Picture 2200 , Loss 1.4632054567337036
Picture 2300 , Loss 1.7483986616134644
Test Loss 255.28078973293304
Test Accuracy 0.4175001084804535
模型保存完毕
Epoch 4 start
Picture 2400 , Loss 1.7363675832748413
Picture 2500 , Loss 1.3317729234695435
Picture 2600 , Loss 1.6025588512420654
Picture 2700 , Loss 1.654605507850647
Picture 2800 , Loss 1.5651419162750244
Picture 2900 , Loss 1.6080172061920166
Picture 3000 , Loss 1.3736324310302734
Picture 3100 , Loss 1.5448280572891235
Test Loss 246.35953533649445
Test Accuracy 0.4296001195907593
模型保存完毕
Epoch 5 start
Picture 3200 , Loss 1.3423157930374146
Picture 3300 , Loss 1.4578744173049927
Picture 3400 , Loss 1.4930287599563599
Picture 3500 , Loss 1.5658748149871826
Picture 3600 , Loss 1.5588352680206299
Picture 3700 , Loss 1.346638798713684
Picture 3800 , Loss 1.2452633380889893
Picture 3900 , Loss 1.4230961799621582
Test Loss 239.84223449230194
Test Accuracy 0.44580015540122986
模型保存完毕
Epoch 6 start
Picture 4000 , Loss 1.4089547395706177
Picture 4100 , Loss 1.4414581060409546
Picture 4200 , Loss 1.5286895036697388
Picture 4300 , Loss 1.2384682893753052
Picture 4400 , Loss 1.1361709833145142
Picture 4500 , Loss 1.3087061643600464
Picture 4600 , Loss 1.4156991243362427
Test Loss 235.95858919620514
Test Accuracy 0.45379993319511414
模型保存完毕
Epoch 7 start
Picture 4700 , Loss 1.3253601789474487
Picture 4800 , Loss 1.530593752861023
Picture 4900 , Loss 1.367636799812317
Picture 5000 , Loss 1.4074701070785522
Picture 5100 , Loss 0.9884268045425415
Picture 5200 , Loss 1.2860769033432007
Picture 5300 , Loss 1.1872339248657227
Picture 5400 , Loss 1.3511030673980713
Test Loss 230.7357712984085
Test Accuracy 0.47259998321533203
模型保存完毕
Epoch 8 start
Picture 5500 , Loss 1.2400048971176147
Picture 5600 , Loss 1.1896859407424927
Picture 5700 , Loss 1.1879096031188965
Picture 5800 , Loss 1.1617904901504517
Picture 5900 , Loss 1.3781458139419556
Picture 6000 , Loss 1.5064095258712769
Picture 6100 , Loss 1.0542035102844238
Picture 6200 , Loss 1.145541787147522
Test Loss 221.77024161815643
Test Accuracy 0.49850010871887207
模型保存完毕
Epoch 9 start
Picture 6300 , Loss 1.4566011428833008
Picture 6400 , Loss 1.120107650756836
Picture 6500 , Loss 1.5964128971099854
Picture 6600 , Loss 1.0693364143371582
Picture 6700 , Loss 1.072567105293274
Picture 6800 , Loss 1.1645498275756836
Picture 6900 , Loss 1.0754010677337646
Picture 7000 , Loss 0.9179976582527161
Test Loss 211.31433379650116
Test Accuracy 0.5270003080368042
模型保存完毕
Epoch 10 start
Picture 7100 , Loss 1.2785162925720215
Picture 7200 , Loss 0.9440584778785706
Picture 7300 , Loss 1.089547872543335
Picture 7400 , Loss 0.8145696520805359
Picture 7500 , Loss 1.1745930910110474
Picture 7600 , Loss 1.2188255786895752
Picture 7700 , Loss 0.8560433983802795
Picture 7800 , Loss 1.2644808292388916
Test Loss 201.86276698112488
Test Accuracy 0.5460002422332764
模型保存完毕